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Abstract

We determine all unbounded approximate solutions of the Gotab—Schinzel functional equation in
the class of functions continuous at 0.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction
The Gotab—Schinzel functional equation

fa+f@y)=f&)f(y) forx,yeR, 1)

where f : R — R is the unknown function, is one of the most important composite
type functional equations. Some information concerning (1), recent results, applications
and numerous references one can find in [1-5,8]. In [6] the problem of the Hyers—Ulam
stability of (1) has been considered. It has been proved there that in the class of continuous
functions Eq. (1) is superstable, i.e. every continuous funcfioriR — R satisfying the
inequality

Ilf x4+ fOy) = f)fnI<e forx,yeR, 2
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wheres is a fixed positive real number, is either bounded or is a solutioth)ofHor more
information concerning superstability we refer to [9] (Chapter 5).

It is known (cf. [7]) that the phenomenon of superstability is caused by the fact that we
mix two operations. Namely, on the right-hand side of Eq. (1) we have the product, but in
(2) we measure the distance between the two sides of (1) using the difference. Therefore,
it is more natural to measure the difference between 1 and the quotients of the sides of Eq.
(2). In [7] it has been proved that for the exponential equation this approach leads to the
traditional stability.

In the present paper we show that in the case of the Gotab—Schinzel equation, the situation
is different.

2. Results

Theorem 1. Lete € (0, 1). Assume thaf : R — R is a continuous a0 solution of the
system of conditional functional inequalities:

Fa+ fy

1 <e¢ 3)
VACINACY)
for x, y € R such thatf (x) f (y) # 0; and
JOfy 1| <e (4)
fx+ f(x)y)

for x, y € R such thatf (x + f(x)y) # 0. Then either

fx) e [Flg,l—i—e} forx e R; (5)
or f has one of the forms

f(x)=0forx € R, (6)

f(x)=1+cxforx e R, @)

f(x) =max{l+ cx, 0} for x € R, (8)

where c is a non-zero real constant.

Proof. Let
Fri={xeR: f(x) =0}
Furthermore, for a fixed € R, letg, : R — R be given by
() =x+ f(x)y foryeR. 9)

Sincee € (0, 1), from (3) and (4) itresults that (y) € Fyifandonlyifx € Frory € Fy.
Therefore, for every € R\ Fy, the setF is strongly invariant undeg,, i.e.

gx(y) € Fyifandonlyify € Fy. (20)
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If Fr =@, then (3)and (4) occur for all, y € R. Hence

‘1_1‘ B f(X—i-f(X)%) B
fo T f0Of ()

AN

and

FOF ()
-1 = -1
o= ’f(x gy p—

<e¢

for all x € R with f(x) # 1. This implies (5).

It is easily seen thaF; = R implies (6). So it remains to consider the situation where
Fy is a non-empty proper subset®f In this case, taking in (4) ane R\ Fy andy =0,
we obtain that £ (0) — 1| < e, which means thaf (0) >1— ¢ > 0. Hence, as$is continuous
at 0, there exists an open neighbourhbabdf 0 such thal/ C R\ Fy. Fixanx € R\ Fy.
Theng, is a homeomorphism angl (0) = x. Thusg, (U) is an open neighbourhood of
X. Moreover, in view of (10)g.(U) C R\ Fy. ConsequenthR \ Fy is open, soFy is a
closed set. LeFJ? = (—00,0]N Fy and F]J{ := [0, 00) N F¢. Obviously at least one of

the setsF andeT“ is non-empty. Suppose th&f # ¢ andF; # (. Letzy := maxF;

andz, := min FJT Thenzy < 0 < zo and
(z1,22) N Fr =4. (11)

Sincef is continuous at 0 ang’(0) > O, there is amx € (0, z2) with f(x) > 0. If
f(x) e (0,1),wehaveg < x+2z1 < x+2z1f(x) < x.Henceg,(z1) € (z1, x) C (21, 22).
On the other hand, by (1@} (z1) € Fr, which contradicts (11).
If £(x)>1, then using (10), we obtaifi; > g, (z2) = Zf(}))‘ € (0,z2) C (z1, z2).
This again yields a contradiction with (11). Therefore we have proved that exactly one of

the setsF’, and F}“ is non-empty. Since the proof in both cases is analogous, assume that
F; #¢andF} = 0. Let

z:=maxFy < 0. (12)

Fix anx € (z,00). By (12), f(x) # 0. If f(x) < 0, then using (10) and (12), we obtain
7z <x <x+ f(x)z = gx(2) <z, which brings a contradiction. Therefofd&x) > 0, sog,

is strictly increasing and, in view of (10) and (12), we get that) <z andg, 1(z) <z.
Henceg, (z) = z, which implies thatf'(x) = 1 — 7. In this way we have proved that

Fay=1- )Zf for x € [z, 00). (13)

Now, suppose that there is an< z with f(x) # 0. If f(x) > 0, then according to (10),
Fr3g. ) = }Ej‘) > 0, which contradicts (12). Consequenffyx) < 0, g, is strictly
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decreasing and, in virtue of (10) and (12), we obtain
(=00, 8x(2)) N Fy = gx((z,00) N Fy = 0.
Thusg,(z) <z andF; C [g«(2), z]. SinceF is closed, this means that there exists
Zo = minFy. (14)
As —z € (z,00) C R\ Fy, using (10) and (13), we obtain
Fr3gy(zo)=—z2+ f(=2)z0=—2+ (1 — _TZ) 20 = —2 + 220.

Hence, by (140 < — z + 220, S0 z<z0. Thuszg = z andFy = {z}. Therefore, we have
proved that eitheFy = (—oco, z] or Fr = {z}.

If the first possibility occurs, then using (13), we obtain thaas the form (8) with
c = —% # 0. If the second one holds, then according to (10), we get that

gx(z) =z forx e R\ Fr=R\{z}.
Hence
fo=1-2 forxeR\{z).
Z

Since f(z) = 0, this implies thaf has the form (7) withe := —% # 0, which completes
the proof. [

The following example shows that the continuityfadt O is an essential assumption in
Theorem 1.

Example 1. Let p € R\ {0}. Define a functionf : R — R by

1-< for x € Q,
f(x)Z{O ! for x e R\ Q.

Thenf is continuous ap and satisfies the system (3)—(4) (in fdés a solution of (1)).
However, neither (5) holds néihas one of the forms (6)—(8).

Remark 1. Note that every function of the form (6)—(8) satisfies (1). Then from Theorem
1 it follows that in the class of functions continuous at 0, Eq. (1) is superstable in the sense
that every function satisfying (3) and (4) either is “close” to 1 or is a solution of (1).
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