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Abstract

We determine all unbounded approximate solutions of the Goła̧b–Schinzel functional equation in
the class of functions continuous at 0.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

The Goła̧b–Schinzel functional equation

f (x + f (x)y) = f (x)f (y) for x, y ∈ R, (1)

wheref : R → R is the unknown function, is one of the most important composite
type functional equations. Some information concerning (1), recent results, applications
and numerous references one can find in [1–5,8]. In [6] the problem of the Hyers–Ulam
stability of (1) has been considered. It has been proved there that in the class of continuous
functions Eq. (1) is superstable, i.e. every continuous functionf : R → R satisfying the
inequality

|f (x + f (x)y) − f (x)f (y)|�ε for x, y ∈ R, (2)
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whereε is a fixed positive real number, is either bounded or is a solution of (1). For more
information concerning superstability we refer to [9] (Chapter 5).
It is known (cf. [7]) that the phenomenon of superstability is caused by the fact that we

mix two operations. Namely, on the right-hand side of Eq. (1) we have the product, but in
(2) we measure the distance between the two sides of (1) using the difference. Therefore,
it is more natural to measure the difference between 1 and the quotients of the sides of Eq.
(1). In [7] it has been proved that for the exponential equation this approach leads to the
traditional stability.
In the present paperwe show that in the case of theGoła̧b–Schinzel equation, the situation

is different.

2. Results

Theorem 1. Let ε ∈ (0, 1).Assume thatf : R → R is a continuous at0 solution of the
system of conditional functional inequalities:∣∣∣∣f (x + f (x)y)

f (x)f (y)
− 1

∣∣∣∣ �ε (3)

for x, y ∈ R such thatf (x)f (y) 	= 0; and∣∣∣∣ f (x)f (y)

f (x + f (x)y)
− 1

∣∣∣∣ �ε (4)

for x, y ∈ R such thatf (x + f (x)y) 	= 0.Then either

f (x) ∈
[

1

1+ ε
, 1+ ε

]
for x ∈ R; (5)

or f has one of the forms

f (x) = 0 for x ∈ R, (6)

f (x) = 1+ cx for x ∈ R, (7)

f (x) = max{1+ cx, 0} for x ∈ R, (8)

where c is a non-zero real constant.

Proof. Let

Ff := {x ∈ R : f (x) = 0}.
Furthermore, for a fixedx ∈ R, let gx : R → R be given by

gx(y) = x + f (x)y for y ∈ R. (9)

Sinceε ∈ (0, 1), from (3) and (4) it results thatgx(y) ∈ Ff if and only ifx ∈ Ff ory ∈ Ff .
Therefore, for everyx ∈ R \ Ff , the setFf is strongly invariant undergx , i.e.

gx(y) ∈ Ff if and only if y ∈ Ff . (10)
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If Ff = ∅, then (3) and (4) occur for allx, y ∈ R. Hence

∣∣∣∣ 1

f (x)
− 1

∣∣∣∣ =
∣∣∣∣∣
f (x + f (x) x

1−f (x)
)

f (x)f ( x
1−f (x)

)
− 1

∣∣∣∣∣ �ε

and

|f (x) − 1| =
∣∣∣∣∣

f (x)f ( x
1−f (x)

)

f (x + f (x) x
1−f (x)

)
− 1

∣∣∣∣∣ �ε

for all x ∈ R with f (x) 	= 1. This implies (5).
It is easily seen thatFf = R implies (6). So it remains to consider the situation where

Ff is a non-empty proper subset ofR. In this case, taking in (4) anx ∈ R \ Ff andy = 0,
we obtain that|f (0)−1|�ε, which means thatf (0)�1−ε > 0. Hence, asf is continuous
at 0, there exists an open neighbourhoodU of 0 such thatU ⊂ R \ Ff . Fix anx ∈ R \ Ff .
Thengx is a homeomorphism andgx(0) = x. Thusgx(U) is an open neighbourhood of
x. Moreover, in view of (10),gx(U) ⊂ R \ Ff . ConsequentlyR \ Ff is open, soFf is a
closed set. LetF−

f := (−∞, 0] ∩ Ff andF+
f := [0, ∞) ∩ Ff . Obviously at least one of

the setsF−
f andF+

f is non-empty. Suppose thatF−
f 	= ∅ andF+

f 	= ∅. Let z1 := maxF−
f

andz2 := minF+
f . Thenz1 < 0 < z2 and

(z1, z2) ∩ Ff = ∅. (11)

Since f is continuous at 0 andf (0) > 0, there is anx ∈ (0, z2) with f (x) > 0. If
f (x) ∈ (0, 1), we have z1 < x +z1 < x +z1f (x) < x. Hencegx(z1) ∈ (z1, x) ⊂ (z1, z2).
On the other hand, by (10)gx(z1) ∈ Ff , which contradicts (11).
If f (x)�1, then using (10), we obtainFf � gx

−1(z2) = z2−x
f (x)

∈ (0, z2) ⊂ (z1, z2).
This again yields a contradiction with (11). Therefore we have proved that exactly one of
the setsF−

f andF+
f is non-empty. Since the proof in both cases is analogous, assume that

F−
f 	= ∅ andF+

f = ∅. Let

z := maxFf < 0. (12)

Fix anx ∈ (z, ∞). By (12),f (x) 	= 0. If f (x) < 0, then using (10) and (12), we obtain
z < x < x + f (x)z = gx(z)�z, which brings a contradiction. Thereforef (x) > 0, sogx

is strictly increasing and, in view of (10) and (12), we get thatgx(z)�z andgx
−1(z)�z.

Hencegx(z) = z, which implies thatf (x) = 1− x
z
. In this way we have proved that

f (x) = 1− x

z
for x ∈ [z, ∞). (13)

Now, suppose that there is anx < z with f (x) 	= 0. If f (x) > 0, then according to (10),
Ff � gx

−1(z) = z−x
f (x)

> 0, which contradicts (12). Consequentlyf (x) < 0, gx is strictly
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decreasing and, in virtue of (10) and (12), we obtain

(−∞, gx(z)) ∩ Ff = gx((z, ∞)) ∩ Ff = ∅.

Thusgx(z)�z andFf ⊂ [gx(z), z]. SinceFf is closed, this means that there exists

z0 := minFf . (14)

As−z ∈ (z, ∞) ⊂ R \ Ff , using (10) and (13), we obtain

Ff � g(−z)(z0) = −z + f (−z)z0 = −z +
(
1− −z

z

)
z0 = −z + 2z0.

Hence, by (14)z0� − z + 2z0, so z�z0. Thusz0 = z andFf = {z}. Therefore, we have
proved that eitherFf = (−∞, z] or Ff = {z}.

If the first possibility occurs, then using (13), we obtain thatf has the form (8) with
c := −1

z
	= 0. If the second one holds, then according to (10), we get that

gx(z) = z for x ∈ R \ Ff = R \ {z}.
Hence

f (x) = 1− x

z
for x ∈ R \ {z}.

Sincef (z) = 0, this implies thatf has the form (7) withc := −1
z

	= 0, which completes
the proof. �

The following example shows that the continuity off at 0 is an essential assumption in
Theorem 1.

Example 1. Let p ∈ R \ {0}. Define a functionf : R → R by

f (x) =
{
1− x

p
for x ∈ Q,

0 for x ∈ R \ Q.

Then f is continuous atp and satisfies the system (3)–(4) (in factf is a solution of (1)).
However, neither (5) holds norf has one of the forms (6)–(8).

Remark 1. Note that every function of the form (6)–(8) satisfies (1). Then from Theorem
1 it follows that in the class of functions continuous at 0, Eq. (1) is superstable in the sense
that every function satisfying (3) and (4) either is “close” to 1 or is a solution of (1).
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